Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171730, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38492603

RESUMEN

Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 µg/L to below 10 µg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.


Asunto(s)
Ecosistema , Lagos , Calcio , Suelo , Eutrofización , Floraciones de Algas Nocivas , Agua , Clorofila , Clorofila A , Hierro , Hierro de la Dieta , Fósforo , Nitrógeno/análisis
2.
Sci Total Environ ; 922: 171149, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38402977

RESUMEN

The coupling relationship between land-use carbon emissions (LCE) and ecological environmental quality (EEQ) is critical for regional sustainable development. Rapid urbanization promotes a notable increase in LCE, which imparts significant stress on EEQ. This study used land use and cover change (LUCC) and Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) data from the urban agglomeration in the middle reaches of the Yangtze River (UAMRYR) to evaluate LCE, applied a remote sensing ecological index (RSEI) model to calculate EEQ, and combined gravity and centroid movement trajectory models to analyze the spatiotemporal evolution characteristics of LCE and EEQ. Four-quadrant and coupling degree (CD) models were used to analyze the synergistic relationship and interaction intensity between LCE and EEQ based on three different scales of pixels, counties, and cities. The results show that: (1) LCE and EEQ exhibit clear spatial inequality distribution, and the total amount of LCE increased from 40.16 Mt. in 2000 to 131.99 Mt. in 2020; however, LCE has not yet reached peak carbon emissions. (2) From 2000 to 2020, cities with a strong correlation between LCE and EEQ showed an increasing trend, and the centroid of LCE moved sharply to Jiangxi during 2000-2005 and 2005-2010. (3) High-CD areas were primarily located in quadrant II, and low-CD areas in quadrant IV. The relationship between LCE and EEQ has improved over the past 21 years, and CD has been increasing. (4) The stability of the coupling results between LCE and EEQ was affected by different research scales; the larger the research scale is, the greater the change in the results. This study provides a scientific basis and practical scheme for LCE reduction, ecological environmental management, and regional sustainable development in the UAMRYR.

3.
Environ Sci Pollut Res Int ; 30(26): 69533-69549, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37138130

RESUMEN

It is of great significance for regional ecological protection and sustainable development to quickly and effectively assess and monitor regional ecological quality and identify the factors that affect ecological quality. This paper constructs the Remote Sensing Ecological Index (RSEI) based on the Google Earth Engine (GEE) platform to analyze the spatial and temporal evolution of ecological quality in the Dongjiangyuan region from 2000 to 2020. An ecological quality trend analysis was conducted through the Theil-Sen median and Mann-Kendall tests, and the influencing factors were analyzed by using a geographically weighted regression (GWR) model. The results show that (1) the RSEI distribution can be divided into the spatiotemporal characteristics of "three highs and two lows," and the proportion of good and excellent RSEIs reached 70.78% in 2020. (2) The area with improved ecological quality covered 17.26% of the study area, while the area of degradation spanned 6.81%. The area with improved ecological quality was larger than that with degraded ecological quality because of the implementation of ecological restoration measures. (3) The global Moran's I index gradually decreased from 0.638 in 2000 to 0.478 in 2020, showing that the spatial aggregation of the RSEI became fragmented in the central and northern regions. (4) Both slope and distance from roads had positive effects on the RSEI, while population density and night-time light had negative effects on the RSEI. Precipitation and temperature had negative effects in most areas, especially in the southeastern study area. The long-term spatiotemporal assessment of ecological quality can not only help the construction and sustainable development of the region but also have reference significance for regional ecological management in China.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Tecnología de Sensores Remotos , China , Regresión Espacial
4.
Front Plant Sci ; 13: 914176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800613

RESUMEN

Forests are among the most important N pools of all terrestrial ecosystems. Elevated atmospheric N deposition in recent decades has led to increased interest in the influences of N application on forest N cycles. However, accurate assessments of N storage in forest ecosystems remain elusive. We used a 14-year experiment of a Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] plantation to explore how long-term N fertilization affected N storage and recovery rates. Our study plots were located in a field that had been continuously fertilized over 14 years (2004-2017) with urea at rates of 0 (N0, control), 60 (N60, low-N), 120 (N120, medium-N), and 240 (N240, high-N) kg N hm-2a-1. Data were collected that included N content and biomass in the understory, litter, and various plant organs (i.e., leaves, branches, stems, roots, and bark), as well as soil N content and density at different depths. Results showed that the total ecosystem N storage in the N-fertilized plots was 1.1-1.4 times higher than that in the control plots. About 12.36% of the total ecosystem N was stored in vegetation (plant organs, litter, and understory) and 87.64% was stored in soil (0-60 cm). Plant organs, litter, and soil had higher N storage than the understory layer. Significantly higher plant N uptake was found in the medium-N (1.2 times) and high-N (1.4 times) treatments relative to the control. The N recovery rate of the understory layer in the N-fertilized treatments was negative and less than that in the control. Application of long-term N fertilizer to this stand led to a low N recovery rate (average 11.39%) and high loss of N (average 91.86%), which indicate low N use efficiency in the Chinese fir plantation ecosystem. Our findings further clarify the distribution of N in an important terrestrial ecosystem and improve our understanding of regional N cycles.

5.
Food Chem ; 344: 128614, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33208238

RESUMEN

Arsenic (As) exposure poses a serious threat to human health. The present study investigated the effects of organic Se on As accumulation, migration, and As bioaccessibility in As-stressed radish. The results showed that organic Se can effectively block the accumulation of As in radish, reduce As bioaccessibility, and promote the conversion of As from inorganic to organic form. The total As content decreased with increasing Se application in raw radish roots, the gastric fraction and the gastrointestinal fraction. Compared to the control (CK) group, the As bioaccessibility in the 24Se treatment of the yeast Se and malt Se groups decreased by 26% and 37%, respectively. These findings provide new comprehensive information for the application of organic Se to alleviate the toxicological effects of As and reduce the health risks of As in edible plants. In the future, it is necessary to carry out a deeper study of the interaction between Se and As through advanced analytical methods.


Asunto(s)
Arsénico/metabolismo , Compuestos de Organoselenio/química , Raphanus/química , Adsorción , Arsénico/análisis , Arsénico/toxicidad , Arsenicales/análisis , Arsenicales/metabolismo , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raphanus/efectos de los fármacos , Raphanus/metabolismo , Suelo/química
6.
Sci Total Environ ; 742: 140602, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32640389

RESUMEN

Biochar is a good adsorbent for water pollutants. However, the effects of biochar on aquatic organisms are not well understood. In this study, different amounts of biochar (CK, 0 mg/g; T1, 10 mg/g; T2, 30 mg/g) were added to sediment to study changes in water quality and its impact on three submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and Ceratophyllum demersum) and the sediment microbial community. The results indicated that biochar treatments significantly increased the water pH and conductivity. Compared with the initial values, the total phosphorus (P) contents in the water of the CK, T1, and T2 treatments decreased by 78.5%, 95.0%, and 58.3%, respectively, while the total nitrogen contents increased by 26.26%, -5.81%, and 19.70%, respectively. Compared with those in CK, the relative growth rates of H. verticillata, V. natans, and C. demersum in T1 increased by 28.4%, 163.1%, and 61.3%, respectively, while those in T2 showed no significant difference except that the growth rates of H. verticillata decreased by 17.7%. The P contents of the three submerged macrophytes increased with the increase of biochar addition, except that there was no significant difference between T2 and CK for H. verticillata. Biochar treatments reduced the biomass of total microbial, bacterial, and fungal phospholipid fatty acids in the sediment for H. verticillata and V. natans, and they increased fungal: bacterial ratios in the low-dose biochar treatments for V. natans and C. demersum. This study demonstrates that the addition of biochar to sediment significantly increased the pH and conductivity, and decreased total P contents in the water. Low-dose biochar treatments were more beneficial for water quality improvements and the growth of submerged macrophytes than high-dose biochar.


Asunto(s)
Hydrocharitaceae , Calidad del Agua , Carbón Orgánico , Nitrógeno , Fósforo
7.
Ecotoxicol Environ Saf ; 200: 110768, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32460053

RESUMEN

Consuming arsenic (As)-contaminated vegetables is the main route of As exposure in humans. The present study focused on the alterations in antioxidant enzymatic activities and As bioaccessibility in As-contaminated radish subjected to Se. Compared to the CK group, the total As content in raw radish was reduced by 27.5 ± 1.3%, and the bioaccessibility of As was reduced by 21.9 ± 2.3% in the 6 mg Se kg-1 treatment group. The total As content in the treatment groups decreased first but then increased with increasing Se application in raw radish, gastric (G) fraction and gastrointestinal (GI) fraction, while the antioxidant activity exhibited the opposite trend. The results revealed that a low amount of Se effectively blocks the accumulation of As in radish, improves the antioxidant activity in radish and reduces the bioaccessibility of As. These findings provide new ideas for effectively alleviating the spread of As to the human body through the food chain.


Asunto(s)
Antioxidantes/farmacología , Arsénico/toxicidad , Raphanus/efectos de los fármacos , Selenio/farmacología , Contaminantes del Suelo/toxicidad , Verduras/efectos de los fármacos , Arsénico/metabolismo , Bioacumulación/efectos de los fármacos , Disponibilidad Biológica , Digestión , Humanos , Modelos Teóricos , Raphanus/enzimología , Raphanus/metabolismo , Contaminantes del Suelo/metabolismo , Verduras/enzimología , Verduras/metabolismo
8.
Ecotoxicol Environ Saf ; 191: 109998, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31796252

RESUMEN

Indoleacetic acid (IAA) is a plant growth regulator that plays an important role in plant growth and development, and participates in the regulation of abiotic stress. To explore the effect of IAA on cadmium toxicity in Cinnamomum camphora, an indoor potted experiment was conducted with one-year-old C. camphora seedlings. The influence of IAA on cadmium accumulation, net photosynthetic rates, respiration, photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll and carotenoids), osmoregulatory substances (proline, soluble sugar and soluble protein) and the malondialdehyde content in C. camphora leaves treated with 30 mg kg-1 cadmium was analysed with or without the addition of 10 mg kg-1 IAA. Cadmium accumulation in the leaves of C. camphora with the addition of exogenous IAA was significantly higher than accumulation during cadmium stress without additional IAA (ca 69.10% after 60 days' incubation). During the culture period, the net photosynthetic rate in C. camphora leaves subjected to cadmium stress without the addition of IAA was up to 24.31% lower than that of control plants. The net photosynthetic rate in C. camphora leaves subjected to cadmium stress and addition of IAA was up to 30.31% higher than that of leaves subjected to cadmium stress without the addition of IAA. Chlorophyll a, total chlorophyll and carotenoid contents in the cadmium-stressed leaves without the addition of IAA were lower than those in the control treatment. The presence of IAA increased the chlorophyll a, total chlorophyll and carotenoid contents relative to the cadmium stress without the addition of IAA. The respiration rate and concentrations of proline, soluble sugar, soluble protein and malondialdehyde in C. camphora leaves subjected to cadmium stress without the addition of IAA were higher than those in the control. The addition of IAA reduced the respiration rate, and the concentrations of proline, soluble sugar, soluble protein and malondialdehyde in C. camphora leaves when compared with the cadmium stress without the addition of IAA. These results indicate that exogenous IAA improves photosynthetic performance and the growth environment of C. camphora by enhancing the net photosynthetic rate, increasing concentrations of osmoregulatory substances, removing reactive oxygen radicals and eliminating potential damage, thereby reducing the toxic effects of cadmium on C. camphora.


Asunto(s)
Cadmio/toxicidad , Cinnamomum camphora/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Cadmio/farmacocinética , Carotenoides/metabolismo , Clorofila/metabolismo , Cinnamomum camphora/metabolismo , Osmorregulación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estrés Fisiológico
9.
Food Res Int ; 119: 701-708, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884706

RESUMEN

Selenium (Se) and iodine (I) are essential elements for humans, and biofortification of vegetables with these elements is an effective way to amend their deficiencies in the diet. In this study, the distribution and transformation of Se and I species were investigated in radish seedlings that were simultaneously supplemented with these two elements; the fate and the bioaccessibility of Se and I species were dynamically surveyed in the oral, gastric and intestinal phases using a simulated in vitro digestion method. The radish seedlings were cultivated in hydroponic conditions with Se (IV), Se (VI), I- and IO3- (each 1 mg L-1). The results revealed that Se-methylselenocysteine (MeSeCys), selenocystine (SeCys2), selenomethionine (SeMet) and Se (VI) were present in radish, and MeSeCys was the dominant species in both gastric and intestinal extracts, comprising 32.7 ±â€¯1.5% and 39.6 ±â€¯1.1% of the total content, respectively. I- was also the dominant species, which accounted for 57.1 ±â€¯2.1%, 46.6 ±â€¯1.5% and 68.8 ±â€¯1.8% of the total digested content respectively in the oral, gastric and intestinal extracts. Meanwhile, IO3- was absent and organic I accounted for approximately 20%. The bioaccessibility of Se and I in the intestinal phase reached 95.5 ±â€¯2.5% and 85.8 ±â€¯0.9%, respectively; although after dialysis through membranes, the data reduced to 60.1 ±â€¯2.8% and 39.6 ±â€¯0.8%, respectively. Contents of MeSeCys and I- increased from the oral to intestinal phase and the bioaccessibility of both Se and I in radish was above 85%. So radish is suitable as a potential dietary source of Se and I with biofortification.


Asunto(s)
Biofortificación , Yodo/análisis , Raphanus/química , Plantones/química , Selenio/análisis , Anticarcinógenos/análisis , Disponibilidad Biológica , Cistina/análogos & derivados , Cistina/análisis , Digestión , Yodo/farmacocinética , Compuestos de Organoselenio/análisis , Selenocisteína/análogos & derivados , Selenocisteína/análisis , Selenocisteína/farmacocinética , Selenometionina/análisis
10.
Food Funct ; 10(3): 1426-1432, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30762046

RESUMEN

Consumption of arsenic (As)-contaminated vegetables is a major As exposure pathway for humans. However, little is known about plant As uptake characteristics and the bioaccessibility of As after ingestion of As-contaminated radish. The present study investigated As concentrations and species in As-contaminated radish and assessed the effects of steamed, griddled and boiled cooking on the bioaccessibility of As in radish using in vitro digestion. The results showed that the radish accumulated 46.3 ± 2.3, 79.2 ± 1.2 and 113.2 ± 3.7 µg As g-1 when treated with 0.5 mg L-1 As(iii) + 0.5 mg L-1 As(v), 1.0 mg L-1 As(iii) + 1.0 mg L-1 As(v) and 2.0 mg L-1 As(iii) + 2.0 mg L-1 As(v), respectively, in culture solution. In both gastric (G) and gastrointestinal (GI) fractions, the total As and species contents in radish decreased in the following order: raw > steamed > griddled > boiled. The bioaccessibility of total As was 97.5 ± 1.2%, 89.3 ± 1.3%, 84.8 ± 1.2% and 52.1 ± 1.1% in the GI phase when the radish was raw, steamed, griddled and boiled, respectively, and the bioaccessibility was not more than 60.1 ± 2.3% in the G phase. These data suggested that boiled cooking should be recommended for consumption of As-contaminated radish because it reduces total As and its species by approximately 50%. Additionally, organic As forms and factors influencing the bioaccessibility of As should be further studied to scientifically evaluate the health risks of As in radish.


Asunto(s)
Arsénico/farmacocinética , Contaminación de Alimentos , Raphanus/química , Disponibilidad Biológica , Culinaria , Digestión , Humanos
11.
J Environ Manage ; 234: 424-430, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30640167

RESUMEN

Rapid economic development has caused an increase in serious pollution problems due to the ever-increasing use of oil and its products, thus making oil pollution control an urgent task. Studies have shown that large amounts of bacterial-feeding nematodes are present in oil-contaminated soil; their function is as yet unclear. In this experiment, different densities of Caenorhabditis elegans (C. elegans) were inoculated into artificially simulated oil-contaminated soil to examine their effects on microbial activity and the microbial community in oil-contaminated soil. Six treatments were investigated: sterilized oil-contaminated soil as control 1 (FSP), nematode-free soil as control 2 (S), oil-contaminated soil (SP), oil-contaminated soil + 5, 10 or 20 individual C. elegans per gram of dry soil (i.e., SPN5, SPN10, SPN20). Results showed that oil pollution significantly increased the soil basal respiration. However, C. elegans weakened the soil basal respiration to different degrees and soil microbial respiration entropy essentially changed in line with the soil basal respiration. Oil pollution and C. elegans boosted catalase activity in contaminated soil by approximately 64.2-145.1%. Soil urease activity of SPN5, SPN10 and SPN20 was 88.5%, 126.7% and 109.0% stronger, respectively, than that of SP. The inoculation of C. elegans changed the microbial phospholipid fatty acid content in the oil-contaminated soil, including soil bacteria, fungi, actinomycetes, Gram-positive bacteria (G+) and Gram-negative bacteria (G-). Therefore, this research demonstrates that C. elegans can stimulate microbial reproduction in oil-contaminated soil, enhance related soil enzyme activities and regulate soil microbial community structure and diversity, thereby improving the contaminated soil environment and promoting oil degradation.


Asunto(s)
Microbiota , Nematodos , Contaminantes del Suelo , Animales , Bacterias , Caenorhabditis elegans , Suelo , Microbiología del Suelo
12.
Environ Sci Pollut Res Int ; 25(35): 35614-35622, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30353434

RESUMEN

Increasing rates of oil exploitation and utilization are associated with increasing rates of oil pollution in soil. Nematodes are abundant in soils with or without oil contamination, among which bacterial-feeding nematodes are the dominant group. However, their function in oil-contaminated soil is unclear. This study explores the effects of bacterial-feeding nematode and organic matter addition on microbial activity and oil degradation in contaminated soil. Experiments were conducted using six treatments of oil-contaminated soil: sterilized (Control), nematode-free (OC), nematode addition (OCN), nematode + wheat straw addition (OCNW), nematode + rapeseed cake addition (OCNR), and nematode + biochar addition (OCNB). At the end of a 168-day incubation experiment, the oil concentration of OCN soil was 26.77% lower than that of OC soil, and those of OCNW, OCNR, and OCNB were 12.83%, 27.81%, and 4.77% lower, respectively, than that of OCN soil. Over the experiment, soil microbial biomass carbon, fluorescein diacetate hydrolysis activity, and dehydrogenase activity increased by 4.35-382.30%, 1.75-302.22%, and - 2.73-224.55%, respectively, in oil-contaminated soils, with or without nematode and organic matter addition. These results suggest that the addition of organic matter and bacterial-feeding nematodes to oil-contaminated soil can promote the growth and activity of microorganisms that break down oil.


Asunto(s)
Caenorhabditis elegans/metabolismo , Escherichia coli/metabolismo , Contaminación por Petróleo/análisis , Petróleo/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Animales , Biomasa , Carbón Orgánico/química , Suelo/química
13.
Front Plant Sci ; 9: 1207, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30158949

RESUMEN

Phosphorus (P) is a limiting element in many aquatic ecosystems. Excessive P input often leads to cyanobacterial bloom, thus triggering ecological imbalances and a series of environmental problems. Submerged macrophytes have a strong ability to absorb P and play important roles in maintaining aquatic ecosystem functions. However, the degree to which submerged macrophytes maintain their tissue P contents in various nutrient levels and the corresponding influencing factors are still not very clear. In this study, the stoichiometric characteristics and stoichiometric homeostasis of P in the aboveground and belowground parts of three submerged macrophytes, Vallisneria natans (Lour.) Hara, Hydrilla verticillata (L.f.) Royle, and Ceratophyllum demersum (L.), with great differences in growth forms, were studied under different growth times and nutrient levels via laboratory experiments. The results showed that the water conductivity, turbidity, and chlorophyll content increased significantly with the increasing nutrient levels. The variation of species, organ, growth time, and nutrient level could significantly affect the P contents of submerged macrophytes. Among these factors, the variance contribution rates caused by the differences of nutrient levels in water column were the highest at more than 50%. The P stoichiometric homeostasis index (HP) in the belowground parts of the three submerged macrophytes was higher than that of the aboveground parts. The HP decreased by the growth time; the HP of V. natans was significantly higher than those of H. verticillata and C. demersum. In summary, the P stoichiometric homeostasis in submerged macrophytes could reflect their responses to environmental changes, and the P content of submerged macrophytes was an indicator of the bioavailability of external P. H. verticillata exhibited a high growth rate and a high accumulation of P content, making it the most suitable species in this study for removing large amounts of P from water in a short term.

14.
Glob Chang Biol ; 24(2): 786-795, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29140600

RESUMEN

Forested catchments provide critically important water resources. Due to dramatic global forest change over the past decades, the importance of including forest or vegetation change in the assessment of water resources under climate change has been highly recognized by Intergovernmental Panel on Climate Change (IPCC); however, this importance has not yet been examined quantitatively across the globe. Here, we used four remote sensing-based indices to represent changes in vegetation cover in forest-dominated regions, and then applied them to widely used models: the Fuh model and the Choudhury-Yang model to assess relative contributions of vegetation and climate change to annual runoff variations from 2000 to 2011 in forested landscape (forest coverage >30%) across the globe. Our simulations show that the global average variation in annual runoff due to change in vegetation cover is 30.7% ± 22.5% with the rest attributed to climate change. Large annual runoff variation in response to vegetation change is found in tropical and boreal forests due to greater forest losses. Our simulations also demonstrate both offsetting and additive effects of vegetation cover and climate in determining water resource change. We conclude that vegetation cover change must be included in any global models for assessing global water resource change under climate change in forest-dominant areas.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Bosques , Recursos Hídricos , Taiga
15.
PLoS One ; 12(4): e0174208, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28399174

RESUMEN

Eucalyptus species are widely planted for reforestation in subtropical China. However, the effects of Eucalyptus plantations on the regional water use remain poorly understood. In an age sequence of 2-, 4- and 6-year-old Eucalyptus plantations, the tree water use and soil evaporation were examined by linking model estimations and field observations. Results showed that annual evapotranspiration of each age sequence Eucalyptus plantations was 876.7, 944.1 and 1000.7 mm, respectively, accounting for 49.81%, 53.64% and 56.86% of the annual rainfall. In addition, annual soil evaporations of 2-, 4- and 6-year-old were 318.6, 336.1, and 248.7 mm of the respective Eucalyptus plantations. Our results demonstrated that Eucalyptus plantations would potentially reduce water availability due to high evapotranspiration in subtropical regions. Sustainable management strategies should be implemented to reduce water consumption in Eucalyptus plantations in the context of future climate change scenarios such as drought and warming.


Asunto(s)
Eucalyptus/metabolismo , Agricultura Forestal , Modelos Teóricos , Transpiración de Plantas/fisiología , Agua/química , China , Clima , Bosques , Lluvia/química , Suelo/química , Temperatura , Volatilización
16.
Sci Rep ; 7: 46293, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425494

RESUMEN

Recent studies have indicated that tree carbon accumulation in subtropical forests has been negatively affected by global change phenomena such as warming and drought. However, the long-term effect of nitrogen addition on plant carbon storage remains poorly understood in these regions. In this study, we conducted a 10-year field experiment examining the effect of experimental N addition on plant growth and carbon storage in a subtropical Chinese fir forest. The N levels were 0 (control), 60, 120, and 240 kg ha-1 yr-1, and the N effects on tree carbon were divided into stand and individual levels. The results indicated that tree carbon storage at the stand scale was not affected by long-term N addition in the subtropical forest. By contrast, significant impacts of different tree size classes on carbon sequestration were found under different N treatments, which indicated that the amount of plant carbon sequestration was significantly enhanced with tree size class. Our findings highlight the importance of community structure and growth characteristics in Chinese fir forests, in which individual size but not additional N regulates tree carbon sequestration in this subtropical forest.


Asunto(s)
Secuestro de Carbono , Bosques , Nitrógeno/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Clima Tropical , Cunninghamia , Ecosistema
17.
AoB Plants ; 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-28011455

RESUMEN

Heat waves in combination with drought are predicted to occur more frequently with climate warming, yet their interactive effects on crop carbon and water balance are still poorly understood. Hence, research on the capacity of crops to withstand and recover from the combined stress is urgently needed. This study investigated the effects of drought and heat wave on a crop species as well as the recovery from the combined stress. Seedlings were grown in growth chambers under two soil water conditions (i.e. well watered and drought stress) at ambient temperature (26°C) for 10 days. Afterwards, half of the seedlings were exposed to a 7-day 42°C heat wave. All the drought-stressed seedlings were then rehydrated upon relief of the heat wave. Leaf gas exchange, the maximum carboxylation capacity (V cmax), plant growth, relative chlorophyll content and leaf water potential were examined during the experimental period. The heat wave reduced leaf gas exchange rates, V cmax and relative chlorophyll content, while it had no impacts on leaf water potential. In contrast, drought stress led to greater reductions in leaf gas exchange rates, growth and water potential than heat wave alone. Seedlings underwent a greater degree of stress in the combination of drought and heat wave than under the single drought treatment. The recovery of leaf gas exchange from drought stress lagged behind the water potential recovery and was delayed by heat wave. Our results show that drought stress had a predominant role in determining plant physiological responses and the negative impacts of drought stress were exacerbated by heat wave. The greater stress in the combination of drought and heat wave translated into the slower recovery of leaf gas exchange. Therefore, drought combined with heat wave may induce greater risks on crops under future climates.

18.
Environ Manage ; 56(5): 1244-51, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26239647

RESUMEN

Although Eucalyptus is widely planted in South China, whose effects on native biodiversity are unclear. The objective of this study was to quantify the richness and composition of understory plants in two contrasting Eucalyptus chronosequences in South China. One was in Zhangzhou City with plantation age of 2, 4, and 6 years after clear-cutting Chinese fir forests, while the other was in Heshan City with plantation age of 2, 3, and 24 years that reforested on barren lands. Results showed that the richness of understory plants and functional groups was not significantly altered in the Zhangzhou chronosequence, while increased in the 24-year-old plantations, with a significantly larger proportion of woody plants than the younger plantations for the Heshan chronosequence. Moreover, a higher richness of woody plants accompanied by a lower richness of herbaceous species was detected in the Zhangzhou chronosequence compared with the Heshan one. To balance the need for pulp production and plant diversity conservation, we suggest that intercropping approaches between exotic Eucalyptus plantations and native forests should be considered in the fast rotation Eucalyptus plantations. However, Eucalyptus plantations may be used as pioneer species to sustain ecosystem functioning for the degraded lands.


Asunto(s)
Biodiversidad , Eucalyptus/fisiología , Agricultura Forestal/métodos , China , Conservación de los Recursos Naturales , Bosques , Especies Introducidas , Madera
19.
Tumour Biol ; 36(12): 9559-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26138585

RESUMEN

Corticotropin-releasing factor (CRF) serves as a neuromodulator in the hypothalamic-pituitary-adrenal axis, playing an essential role in depression, anxiety, and pain regulation. However, its biological role in bone cancer induced pain has not been investigated. In the present study, we aimed to elucidate the expression and distribution of CRF in spinal cord using a rodent model of bone cancer pain. Our study showed that implantation of Walker 256 mammary gland carcinoma cells into the tibia of rats significantly increased CRF expression in the spinal cord in a time-dependent manner. The upregulated expression of CRF mainly expressed in the superficial dorsal horn of spinal cord. Moreover, immunofluorescence double staining showed that CRF was extensively colocalized with neurons, but hardly with astrocytes or microglia. In addition, intrathecal injection of CRF receptor antagonist (α-helical-CRF) significantly inhibited heat hyperalgesia, mechanical allodynia, and the expression of c-Fos in spinal dorsal horn of bone cancer pain rats. In summary, our study demonstrates that CRF plays an important role in the development and maintenance of bone cancer pain via activation of neurons.


Asunto(s)
Neoplasias Óseas/genética , Carcinoma 256 de Walker/genética , Hormona Liberadora de Corticotropina/biosíntesis , Médula Espinal/metabolismo , Animales , Astrocitos/patología , Neoplasias Óseas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma 256 de Walker/patología , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neuronas/metabolismo , Neuronas/patología , Ratas , Médula Espinal/patología
20.
Ecol Evol ; 3(11): 3895-905, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24198947

RESUMEN

Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8 years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m(-2) year(-1)) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA